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ABSTRACT

The block-based coding structure in hybrid video coding
framework inevitably introduces compression artifacts such
as blocking, ringing etc. Recently, neural network based loop
filters are proposed to enhance the reconstructed frame. But
the coding information has not been full utilized in the design
of neural networks. Therefore, in this paper, we propose a
Residual-Reconstruction-based Convolutional Neural Net-
work (RRCNN) to improve the coding efficiency to its full
extent, where the residual frame is fed into the network as a
supplementary input to the reconstructed frame. In essence,
the residual signal can provide effective information about
block partitions and can help in recognizing smooth, edge
and texture regions in a picture, such that more adaptive
parameters can be trained to handle different texture charac-
teristics. In addition, the network structure has been carefully
designed in the proposed dual-input network to learn useful
context information from two signals with their distinct fea-
tures. To the best of our knowledge, this is the first work that
employs the residual signal in the CNN-based in-loop filter
for video coding. The experimental results show that our
proposed RRCNN approach leads to significant BD-rate sav-
ings compared to HEVC and the state-of-the-art CNN-based
schemes, indicating residual signal plays an important role in
the enhancement of reconstructed video frames.

Index Terms— Convolutional Neural Network, High Ef-
ficiency Video Coding, In-loop Filter, Reconstruction, Resid-
ual.

1. INTRODUCTION

Advanced Video Coding (H.264/AVC) [1], High-Efficiency
Video Coding (H.265/HEVC) [2] are existing popular video
coding standards and Versatile Video Coding (VVC) [3] is the
emerging next-generation standard under the development of
Moving Pictures Expert Group (MPEG) and Video Coding
Experts Group (VCEG). All of these video coding standards
adopt the hybrid coding frameworks, where the major proce-
dures include prediction, transform, quantization, and entropy
coding. In the hybrid coding framework, a video frame is par-
titioned into non-overlapping coding blocks or units, forming
the concepts of coding units (CU), prediction unit (PU), trans-
form unit (TU) etc. Block-based coding scheme is hardware-
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friendly and easy to implement and it enables useful coding
functionalities such as parallelization.

However, block-wise operation inevitably introduces dis-
continuity at the block boundaries, such that blocking artifacts
are one of the major distortions [4] in video coding. Beyond
that, a coarse quantization is another major factor in causing
video quality degradation especially at the regions with sharp
edges, which is known as the ringing artifacts. This type of
ripple phenomena induces low visual quality and bad user ex-
perience [5]. In view of these, extensive Convolutional Neu-
ral Network (CNN) based in-loop filters [6—8] have been pro-
posed to compensate artifacts and distortions in video coding.
However,only the reconstruction is used as the input in most
current CNN based methods. The other information in the bit
stream has not been utilized to improve the performance of
the in-loop filter.

To improve the performance of the CNN-based loop filter
to its full extent, we propose a Residual-Reconstruction-based
Convolutional Neural Network (RRCNN) utilizing both the
reconstruction and residual as input. The major contributions
of this work are two-folds:

e First, we employ the residual signal as the supplemen-
tary information and feed it into the neural nets in pair
with the reconstructed frame. The residual is utilized
as an indicator to direct the CNN learning how to aug-
ment signal missed by block-wise video compression
schemes. To the best of our knowledge, this is the first
work to utilize the residual signal in the purpose of in-
loop filter for video coding.

e Second, the network structure is carefully designed for
the dual-input CNN to fully utilize the underlying fea-
tures in different input channels, where residual blocks
are used for Residual-Network and a hierarchical au-
toencoder network is used for Reconstruction-Network.

We organize the remainder of this paper as follows. Sec-
tion 2 introduces the proposed RRCNN approach. In sec-
tion 3, we report and analyze the experimental results. Fi-
nally, Section 4 summarizes this paper.

2. PROPOSED ALGORITHM

In this section, we will introduce the proposed RRCNN
method in detail including the architecture of the RRCNN
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Fig. 1. RRCNN with sub-networks of both the Residual Network and the Reconstruction Network. Residuals into the Residual
Network to provide the TU partition information and the detailed textures information. The Residual Network relies on residual
blocks to learn features effectively with difference learning. We feed the reconstruction into the Reconstruction Network. The
Reconstruction Network executes the downsampling and upsampling strategy to patch up the local and global information. This
enhances reconstruction quality and aids with the difference learning approach.

Table 1. Reconstruction Network Parameters of Conv And Transposed Conv Layers

Type of Layer Convl | Conv2 | Conv3 | Transposed Convl | Conv4 | Transposed Conv2 | Conv5 | Convb

Kernel Size 3x3 | 3x3 | I3x3 2x2 3x3 2x2 3x3 | 3x3
Feature Map Number 32 64 128 64 64 32 32 32
Stride 1 1 1 2 1 2 1 1
Padding 1 1 1 0 1 0 1 1

and the design of the Residual and Reconstruction networks.

2.1. Architecture of the proposed RRCNN framework

Fig. 1 shows the overall architecture of the proposed RRCNN
framework. The proposed RRCNN framework including two
sub-networks: the reconstruction network and the residual
network. The reconstruction network uses the reconstruction
as input and derives reconstruction feature map from the in-
put. The residual network uses the residual as input and de-
rives residual feature maps from the input. Note that we use
different sub-networks for the reconstruction and residual as
they have completely different characteristics. The residual is
more sensitive while the reconstruction consisting of residual
and prediction contains more global information. The feature
maps derived from the two sub-networks are then concate-
nated together and used as the input of the last convolutional
layer. In addition, we learn the difference between the input

and the label to accelerate the training process.

2.2. Design of the Residual Network

We develop a Residual Network consisting of several resid-
ual blocks [9] to adapt to the features of the residual. The
residual block could effectively keep the residual features and
the gradient information on the shallow layers. Therefore, the
proposed Residual Network can derive the distinct features
from the residual frame. Considering the complexity, we use
only 8 convolutional layers to derive the residual features.

In Fig. 1, the upper rectangle with dotted line shows the
detailed architecture of our proposed Residual Network. The
Residual Network includes three residual blocks consisting 6
convolutional layers, and two convolutional layers at the be-
ginning and end. For each convolutional layer, we set the
Kernel Size as 3 x 3, the Feature Map Number as 32, Stride
as 1, and Padding as 1. As the Parametric Rectified Linear
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Unit (PReLU) [10] has been demonstrated to be more effec-
tive than the ReLLU, we employ it as the activation function in
the Residual Network.

2.3. Design of the Reconstruction Network

We develop a Reconstruction Network containing several
downsampling and upsampling pairs to learn the reconstruc-
tion features. The Reconstruction Network adopts the classic
autoencoder architecture [11] [12] and the skip connection
concatenating the encoder and decoder parts [13]. In this
way, the reconstruction network is able to recover the global
information and details as much as possible.

In Fig 1, the lower rectangle with dotted line shows the
detailed structure of our proposed Reconstruction Network.
We adopt the pooling and transposed convolutional layer to
perform downsampling and upsampling, respectively. Table 1
shows the detailed configurations. For the convolutional lay-
ers, we set the Kernel Size as 3 x 3, Stride as 1, Padding as
1, Feature Map Number as 32, 64 or 128. For the transposed
convolutional layers [14], we set the Kernel Size as 2 x 2,
Stride as 2, Padding as 1, Feature Map Number as 64 or 32.

2.4. Loss function, dataset and training

Loss function. We employ Mean Squared Error (MSE) [15]
as the loss function for our proposed RRCNN as follows,

1 N
L(©) = 5 D_IIT(Yile) — Xill3 (1
i=1

where O encapsulates the whole parameter set of the network
containing weights and bias and T'(Y;|©) denotes the network
module. X; is an original frame, where ¢ indexes each frame.
Y, is the corresponding reconstruction, that is compressed by
HEVC when we turn off its deblocking and SAO. N is the
number of frames.

Dataset. We employ the DIV2K [16] [17] comprising 800
training images and 100 validating images of 2k resolution as
the original frames. Then a modified HEVC reference soft-
ware is used to encode original frames to generate the recon-
struction and residual with Q P22, Q P27, Q P32, and Q P37,
respectively. We finally extract 64 x 64 blocks from the Luma
component of the reconstructed, residual, and original frames
and use them as the inputs and labels for training our pro-
posed RRCNN. In total, there are 522,939 groups of inputs
and labels for training and 66, 650 groups for validation.

Training. We train the () P37 model first, and then fine
tune the (Q P37 model to get all the other models. We set the
batch-size as 16 and the base learning rate as 1e~*. We adopt
the Adaptive Moment Estimation (Adam) [18] algorithm with
the momentum of 0.9 and the weight decay of 1e~*. We train
the @ P37 model with 120 epochs. After 100 epochs, we de-
crease the learning rate by 10 times. After the QP37 model
is derived, We fine tune it with 20 epochs to obtain the other

Table 2. Performance comparison of VRCNN and RRCNN
against HEVC under All Intra configuration

Class Sequence VRCNN RRCNN
vs. HEVC | vs. HEVC
Class A Traffic -8.1% -10.2%
PeopleOnStreet —7.7% -9.4%
Class B Kimono —5.9% -8.6%
ParkScene —6.2% -8.1%
Cactus —2.7% -5.8%
BasketballDrive -5.2% -1.9%
BQTerrace —2.9% -4.2%
Class C BasketballDrill —10.6% -13.8%
BQMall —7.3% -9.3%
PartyScene —4.6% -5.6%
RaceHorses —5.8% -7.1%
Class D BasketballPass —7.6% -9.5%
BQSquare —5.3% -6.3%
BlowingBubbles | —5.5% -6.7%
RaceHorses -8.9% -10.2%
Class E FourPeople —10.0% -12.8%
Johnny -9.1% -12.5%
KristenAndSara -9.4% -11.8%
Summary | Class A —7.9% -9.8%
Class B —4.6% -6.9%
Class C -7.1% -8.9%
Class D —6.8% -8.2%
Class E —9.5% -12.4%
Avg. All —6.8% -8.9%

models. Finally, we obtain the models for all the ()Ps for
testing.

3. EXPERIMENTAL RESULTS

The proposed algorithm is implemented in HM-16.19 to com-
pare with HEVC, VRCNN [6], and the state-of-the-art CNN-
based loop filter with partition and reconstruction as input [7].
We test all the sequences defined in the HM-16.19 common
test condition (CTC) [19] except for the two 10bit sequences.
The all intra configuration is used to demonstrate the effec-
tiveness of the proposed algorithm as the proposed algorithm
is designed for the intra frame. We test QPs from 22 to 37
defined in the CTU to verify the performance of the proposed
algorithm from low bitrate to high bitrate cases. The BD-rate
is employed for a fair comparison among the performance of
various methods.

3.1. Performance comparison with HEVC and VRCNN

Table 2 shows the comparison of the proposed RRCNN with
VRCNN, as well as HEVC with Deblocking Filter (DF) [20]
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Fig. 2. Comparison of RD curves between HEVC with DF
and SAO, VRCNN and proposed RRCNN on BasketballDrill.

Table 3. Computational complexity of VRCNN and RRCNN
against HEVC under All Intra Case

Approches | Encoding Encoding
Time(CPU) | Time(GPU)

VRCNN 172.57% 102.84%

RRCNN 243.43% 109.49%

and Sample Adaptive Offset (SAO) [21] filters on CTC test
sequences under all intra configuration. We can see that
RRCNN achieves a better performance with an average of
8.9% on BD-rate compared with HEVC with DF and SAO
filters. For the Class E sequences, the performance improve-
ment can be as high as 12.4%. In addition, compared with
the VRCNN, the proposed RRCNN can lead to an average
of 2.1% performance improvement. The RRCNN method
shows consistent gains compared with VRCNN for all the
tested sequences. The experimental results demonstrate that
introducing the residual for augmenting the reconstruction
and designing the customized network depending on input
characteristics could achieve bitrate savings.

Fig. 2 shows one typical example of the Rate-Distortion
(RD) curves comparison of proposed RRCNN approach, VR-
CNN, and HEVC with DF and SAO filters on Luma compo-
nent. We can see that the PSNR of the proposed RRCNN
method is higher than both VRCNN and HEVC with in-loop
filters under each QP. The RD curve also demonstrates the
effectiveness of the proposed algorithm.

The encoding complexities of VRCNN and the proposed
RRCNN are shown in Table 3. The VRCNN complexity over-
head is 172.57% while the RRCNN complexity overhead is
243.43% compared to HEVC. But they all can be improved
by GPU acceleration to a similar level as HEVC.

Table 4. Performance comparison between the proposed
RRCNN, the state-of-the-art method with the reconstruction
and partition as input, and the method with reconstruction as
the only input

Class | Partition Reconstruction | Residual Reconstruction
vs. Reconstruction vs. Reconstruction
A —0.4% -1.0%
B -0.2% -0.9%
C —0.4% -1.1%
D —0.4% -0.8%
E —0.6% -1.6%
Avg. —0.4% -1.0%

3.2. Performance comparison with state-of-the-art method

Table 4 shows the performance comparison between the pro-
posed method and the method with only construction as input,
and the state-of-the-art method with partition and reconstruc-
tion as input. We can see that the proposed method saves
an average of 1.0% bitrate compared with the method with
only Reconstruction as the input. The experimental results
demonstrate that the residual is a good supplement to the re-
construction and can bring additional benefit to improve the
performance of the CNN-based loop filter.

In addition, compared to the dual-input method of the Par-
tition+Reconstruction, the proposed dual-input approach of
the Residual+Reconstruction saves an average of 0.6% BD-
rate. The experimental results demonstrate that the residual is
a more effective factor compared with the partition when used
as the other inputs of the network. The residual can not only
provide the partition information that is the same as the par-
tition but also introduce more abundant texture information
that is beneficial for the overall coding performance.

4. CONCLUSION

In this paper, we propose the RRCNN algorithm utilizing both
residual and reconstruction as input to improve the perfor-
mance of the in-loop filter. To the best of our knowledge, this
is the first work that uses the residual to enhance the recon-
struction for improving the quality of reconstructed video. In
addition, we design specified networks for the residual and
reconstruction utilizing their specific characteristics to fur-
ther improve the performance. The proposed algorithm is
implemented in the High Efficiency Video Coding (HEVC)
reference software. The experimental results show the pro-
posed algorithm can bring 8.9% performance improvement
compared with HEVC, indicating the effectiveness of the pro-
posed algorithm.

3112

Authorized licensed use limited to: University of Missouri-Kansas City. Downloaded on June 29,2021 at 02:27:45 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

(4]

(5]

(6]

(8]

5. REFERENCES

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra, “Overview of the h. 264/avc video
coding standard,” [EEE Transactions on circuits and
systems for video technology, vol. 13, no. 7, pp. 560—
576, 2003.

Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand, “Overview of the high efficiency
video coding (hevc) standard,” IEEE Transactions on
circuits and systems for video technology, vol. 22, no.
12, pp. 1649-1668, 2012.

Benjamin Bross, Jianle Chen, and Shan Liu, “Versatile
Video Coding (Draft 4),” Document ITU-T SG 16 WP
3 and ISO/IEC JTC 1/SC 29/WG 11 JVET-M1001-v6,
Marrakech, MA, Jan. 2019.

Shuiming Ye, Qibin Sun, and Ee-Chien Chang, “Detect-
ing digital image forgeries by measuring inconsistencies
of blocking artifact,” in 2007 IEEE International Con-
ference on Multimedia and Expo. IEEE, 2007, pp. 12—
15.

Hyungjun Lim and HyunWook Park, “A ringing-artifact
reduction method for block-dct-based image resizing,”
IEEE transactions on circuits and systems for video
technology, vol. 21, no. 7, pp. 879-889, 2011.

Yuanying Dai, Dong Liu, and Feng Wu, “A convolu-
tional neural network approach for post-processing in
hevc intra coding,” in International Conference on Mul-
timedia Modeling. Springer, 2017, pp. 28-39.

Xiaoyi He, Qiang Hu, Xiaoyun Zhang, Chongyang
Zhang, Weiyao Lin, and Xintong Han, “Enhancing
hevc compressed videos with a partition-masked con-
volutional neural network,” in 2018 25th IEEE Interna-
tional Conference on Image Processing (ICIP). IEEE,
2018, pp. 216-220.

Ren Yang, Mai Xu, Tie Liu, Zulin Wang, and Zhenyu
Guan, “Enhancing quality for hevc compressed videos,”
IEEE Transactions on Circuits and Systems for Video
Technology, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Pro-
ceedings of the IEEE international conference on com-
puter vision, 2015, pp. 1026-1034.

3113

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan,
Prafulla Dhariwal, John Schulman, Ilya Sutskever, and
Pieter Abbeel, “Variational lossy autoencoder,” arXiv
preprint arXiv:1611.02731, 2016.

Geoffrey E Hinton and Ruslan R Salakhutdinov, “Re-
ducing the dimensionality of data with neural networks,”
science, vol. 313, no. 5786, pp. 504-507, 2006.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” in International Conference on Med-
ical image computing and computer-assisted interven-
tion. Springer, 2015, pp. 234-241.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor,
and Robert Fergus, “Deconvolutional networks.,” in
Cvpr, 2010, vol. 10, p. 7.

Dennis Wackerly, William Mendenhall, and Richard L
Scheaffer, Mathematical statistics with applications,
Cengage Learning, 2014.

Andrey Ignatov, Radu Timofte, et al., “Pirm challenge
on perceptual image enhancement on smartphones: re-
port,” in European Conference on Computer Vision
(ECCV) Workshops, January 2019.

Eirikur Agustsson and Radu Timofte, “Ntire 2017 chal-
lenge on single image super-resolution: Dataset and
study,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2017,
pp. 126-135.

“Adam: A
arXiv preprint

Diederik P Kingma and Jimmy Ba,
method for stochastic optimization,”
arXiv:1412.6980, 2014.

Karl Sharman and Karsten Suehring, “Common test
conditions,”  Document ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11 JCTVC-AE1100, San
Diego, US, Apr. 2018.

Andrey Norkin, Gisle Bjontegaard, Arild Fuldseth,
Matthias Narroschke, Masaru Ikeda, Kenneth Anders-
son, Minhua Zhou, and Geert Van der Auwera, “Hevc
deblocking filter,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1746—
1754, 2012.

C.-M. Fu, C.-Y. Chen, and C.-Y. Tsai, “CE13: Sam-
ple Adaptive Offset with LCU-Independent Decoding,”
ITU-T/ISO/IEC JCT-VC Document JCTVC-E049, Mar.
2011.

Authorized licensed use limited to: University of Missouri-Kansas City. Downloaded on June 29,2021 at 02:27:45 UTC from IEEE Xplore. Restrictions apply.



