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The block-based coding structure in the hybrid video coding framework inevitably introduces compression
artifacts such as blocking, ringing, etc. To compensate for those artifacts, extensive filtering techniques were
proposed in the loop of video codecs, which are capable of boosting the subjective and objective qualities of
reconstructed videos. Recently, neural network based filters were presented with the power of deep learning
from a large magnitude of data. Though the coding efficiency has been improved from traditional methods
in High-Efficiency Video Coding (HEVC), the rich features and information generated by the compression
pipeline has not been fully utilized in the design of neural networks. Therefore, in this paper, we propose
the Residual-Reconstruction-based Convolutional Neural Network (RRNet) to further improve the coding
efficiency to its full extent, where the compression features induced from bitstream in form of prediction
residual is fed into the network as an additional input to the reconstructed frame. In essence, the residual sig-
nal can provide valuable information about block partitions and can aid reconstruction of edge and texture
regions in a picture.Thus, more adaptive parameters can be trained to handle different texture characteristics.
The experimental results show that our proposed RRNet approach presents significant BD-rate savings com-
pared to HEVC and the state-of-the-art CNN-based schemes, indicating that residual signal plays a significant
role in enhancing video frame reconstruction.
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1 Introduction
Advanced Video Coding (H.264/AVC) [51], High-Efficiency Video Coding (H.265/HEVC) [43] are
existing popular video coding standards. Versatile Video Coding (VVC) [4] is the emerging next-
generation standard under the development of the Moving Pictures Expert Group (MPEG). These
video coding standards adopt the so-called hybrid coding frameworks, where themajor procedures
include prediction, transform, quantization, and entropy coding. In the hybrid coding framework,
a video frame is partitioned into non-overlapping coding blocks. These blocks form the basis cod-
ing units (CU), prediction units (PU), transform units (TU), etc. A block-based coding scheme is
hardware-friendly and easy to implement. It also lends itself to useful coding functionalities such
as parallelization.

However, block-wise operation inevitably introduces video quality degradation near the block
boundaries, known as block artifacts. Beyond that, coarse quantization is another major factor
in causing video quality degradation, especially at the regions with sharp edges known as the
ringing artifacts. This ripple phenomenon induces poor visual quality and leads to a bad user-
experience [32]. Given this, extensive in-loop filters have been proposed to compensate for artifacts
and distortions in video coding. The in-loop filters can be classified into two categories based on
whether the deep learning techniques are used.

The first category is traditional signal processing based methods, including Deblocking Filter
(DF) [35, 39], Sample Adaptive Offset (SAO) [13–15], Adaptive Loop Filter (ALF) [45], non-local
in-loop filter [37] and many others. DF can reduce blocking artifacts at PU and TU boundaries.
SAO compensates the pixel-wise residuals by explicitly signaling offsets for pixel groups with
similar characteristics. ALF is essentially a Wiener filter where the current pixel is filtered as a
linear combination of neighboring pixels.The three filters mentioned above are based on neighbor-
pixel statistics. In contrast, the non-local in-loop filter takes advantage of non-local similarities in
natural images.

Traditional methods improve the video quality with relatively low complexity. Therefore, they
have been successfully applied in video coding standards. Recently, however, the deep learning
based in-loop filters have been proposed to achieve further improvements [23, 36, 57]. One type of
CNN utilizes the principle of the Kalman filter to construct a deep learning filter. Another type of
CNN consists of the highway or content-aware block units to achieve flexibility. People have real-
ized that these deep learning based schemes have at least two benefits from traditional methods.
One is that non-linear filtering operations are involved in the system. It is critical to capture and
compensate for the distortions caused by codecs because these coding distortions are essentially
non-linear by themselves. Another benefit is that deep learning can learn features from a large
amount of data automatically, which would be more efficient than handcraft features. Though the
coding efficiency has been improved from traditional methods in HEVC, the coding information
has not been fully utilized in the design of neural networks. In [19], the authors proposed to uti-
lize partition information in the design of neural networks, indicating introducing more coding
information can benefit the overall performance.

Motivated by these, we propose a novel in-loop algorithm by introducing the residual signal to
the network and devising two sub-networks for residual and reconstruction signals, respectively.
They are the Residual Network and the Reconstruction Network. The major contributions of this
work are three-fold:

• First, we supply the residual signal as the supplementary information and feed it into the
neural network in pair with the reconstructed frame. To the best of our knowledge, this is
the first work that utilizes the residual signal to devise an in-loop filter for video coding.
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• Second, the network structure is carefully designed for the dual-input CNN to utilize the un-
derlying features in different input channels fully. The residual blocks are used for Residual-
Network. A hierarchical autoencoder networkwith skip connections is used for Reconstruction-
Network.

• Third, extensive experiments have been conducted to compare with existing algorithms to
demonstrate its effectiveness of the proposed scheme. Throughout analyses are provided to
give more insights into the problem based on the experimental results.

Note that a residual introduced deblockingmethod has been proposed in our previous work [25].
This paper provides more motivation, analysis, experimental results, and comparison of related
works on the residual-based loop filter. Additionally, in order to validate the efficiency of our RRNet
design, we recurs more three inputs-basedmethods for comparison.The experimental results show
that the customized Residual Network and Reconstruction Network is significantly beneficial for
bitrate savings.

We organize the remainder of this paper as follows. In Section 2, we describe related works.
Section 3 introduces the proposed RRNet approach. In Section 4, we report and analyze the exper-
imental results. Finally, Section 5 summarizes this paper and discusses future works.

2 Related Work
In this section, we briefly review the prior works related to loop filters of video coding, including
the traditional signal processing based methods and deep learning based methods.

2.1 Traditional signal processing based methods
Relying on the signal processing theory, the following in-loop filter methods have been proposed.

1) Deblocking Filter (DF). List et al. [34] devised the first version of an adaptive deblocking fil-
ter, which was adopted by H.264/AVC standard. It depressed distortions at block boundaries
by applying an appropriate filter. Zhang et al. [58] proposed a three-step framework con-
sidering task-level segmentation and data-level parallelization to efficiently parallelize the
deblocking filter. Tsu-Ming et al. [35] then proposed a high-throughput deblocking filter. In
HEVC, Norkin et al. [39] designed a DF with lower complexity and better parallel-processing
capability. Li et al. [29] provided deblocking with a shape-adaptive low-rank before preserv-
ing edges well and an extra before restoring the lost high-frequency components.

2) Sample Adaptive Offset (SAO) [12]. Chien and Karczewicz proposed an adaptive loop filter-
ing technique [9] based on the Laplacian energy and classifications of the reconstructed pixel
value. This approach obtains obvious performance improvements but with high complexity.
Ken et al. [38] designed an extrema correcting filter (EXC) and a boundary correcting fil-
ter (BDC). Huang et al. [21] developed a picture-based boundary offset (PBO), picture-based
border offset (PEO) and picture-based adaptive constraint (PAC). Fu et al. [13, 14] devised an
algorithm that can adaptively select the optimal pixel-classification method. However, com-
putational complexity is still very high. To address this, Fu and Chen et al. [15] proposed
a sample adaptive offset (SAO) method, which was finally adopted by HEVC. It provides a
better trade-off between performance and complexity.

3) Adaptive Loop Filter (ALF). Tsai et al. [45] proposed the ALF method to decrease the mean
square error between original frames and decoded frames by Wiener-based adaptive filter.
Thefilter coefficients are trained for different pixel regions at the encoder.The coefficients are
then explicitly signaled to the decoder. Besides, ALF activates the filter at different regions
by signaling control flags.
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(a) Ground Truth (b) Residual

Fig. 1. Typical example of the Kimono residual under 𝑄𝑃37 with intra mode. The color has been adjusted
for clear viewing. The inverse transformed residual signal provides the comprehensive partition information
of the transforming units. It is obvious to see the 32 × 32, 16 × 16, 8 × 8, and 4 × 4 partition blocks of TU
in the residual. For instance, the shapes of the woman’s body and tree trunks are more easily discernable.
Meanwhile, the residual contains a large amount of dense, detailed textures. For example, we can see many
needle leaves on the trees. This information can help to augment the considerable variation in some areas
of the reconstruction.

4) Non-local Mean Models. The non-local mean methods improve the efficiency of in-loop fil-
ters as well. To suppress the quantization noise optimally and improve the quality of the
reconstructed frame, Han et al. [16] proposed a quadtree-based non-local Kuan’s (QNLK)
filter. Ma et al. [37] proposed the group-based sparse representation with image local and
non-local self-similarities. This model lays a solid groundwork for the in-loop filter design.
Zhang et al. [56] utilized image non-local prior knowledge to develop a loop filter by impos-
ing the low-rank constraint on similar image patches for compression noise reduction.

2.2 Deep learning based methods
Recently, the deep learning based in-loop filters have been proposed. For images, Dong et al. [11]
designed a compact and efficient model, known as Artifacts Reduction Convolutional Neural Net-
works (AR-CNN). This model was effective for reducing various types of coding artifacts. Kang et
al. [27] propose to learn sparse image representations for modeling the relationship between low-
resolution and high-resolution image patches in terms of the learned dictionaries for image patches
with and without blocking artifacts, respectively. Wang et al. [50] devised a Deep Dual-Domain
(𝐷3) based fast restoration framework to recover high-quality images from JPEG compressed im-
ages. The 𝐷3 model increased the large learning capacity of deep networks.

For videos, Xue et al. [52] proposed the task-oriented flow (TOFlow), where a motion represen-
tation was learned for video enhancement. Tao et al. [44] proposed a sub-pixel motion compensa-
tion (SPMC) model, which has shown its efficiency in video super-resolution applications. In the
framework of video coding, Dai et al. [10] designed a Variable-filter-size Residual-learning CNN
(VRCNN) that achieved 4.6% bit-rate gain. Yang et al. [53, 54] developed the Quality Enhance-
ment Convolutional Neural Network (QE-CNN) method in HEVC. With the residual learning [18],
Wang et al. [49] designed the dense residual convolutional neural network (DRN), which exploits
the multi-level features to recover a high-quality frame from a degraded one. Other CNN-based
video compression works, including [24, 40, 48] pushed the horizon of in-loop filtering techniques
as well. Most recently, Zhang et al. [57] devised the residual highway convolutional neural net-
work (RHCNN) in HEVC. Lu et al. [36] modeled loop filtering for video compression as a Kalman
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Fig. 2. RRNet with sub-networks of both the Residual Network and the Reconstruction Network. Residu-
als are fed into the Residual Network to provide the TU partition information and the detailed textures
information. The Residual Network relies on residual blocks to learn features effectively with residual learn-
ing. We feed the reconstruction into the Reconstruction Network. The Reconstruction Network executes
the downsampling and upsampling strategy to patch up the local and global information. This enhances
reconstruction quality and aids with the residual learning approach.

filtering process. Jia et al. [23] proposed a content-aware CNN based in-loop filtering for HEVC.
However, most of these frameworks are designed for one specific restoration task. To address this
issue, Jin et al. [26] proposed a flexible deep CNN framework that exploits the frequency charac-
teristics of different types of artifacts.

The aforementioned deep learningmethods only took the reconstructed low-quality video frame
as input. However, the coding information was not efficiently utilized. To better use coding infor-
mation, Lin and He et al. [19, 33] proposed a partition-masked CNN, where the block partition
information was utilized for improving the quality of the reconstructed frames. It has shown ad-
ditional improvements in terms of coding efficiency over the reconstruction-only methods.

3 Proposed algorithm
This sectionwill discuss the proposed RRNet scheme in detail, including amore in-depth discussion
on the architecture of the RRNet, loss function, dataset, and training process.

3.1 Architecture of the proposed RRNet framework
Fig. 2 shows the overall architecture of the proposed RRNet framework.The proposed RRNet frame-
work includes two sub-networks: the reconstruction network and the residual network.The recon-
struction network uses the reconstruction as input and derives reconstruction feature maps from
the input. The residual network uses the residual as input and derives residue feature maps from
the input. The feature maps derived from the two sub-networks are concatenated together and
used as the input of the last convolutional layer. In addition, we use the residual learning method
that learns the difference between the input and the label to accelerate the training process.
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(a) Cactus Ground Truth (b) Cactus Residual Feature Map

(c) BQSquare Ground Truth (d) BQSquare Residual Feature Map

Fig. 3. Residual feature maps of Cactus and BQSquare derived from the Residual Network of RRNet under
𝑄𝑃37. The residual features of Cactus with abundant context including pokers, calender and metal circle
demonstrates its prominent contribution for enhancing the quality of the video frame. The residual features
of BQSquare which are a flat example show a great amount of details involving chairs and tables.
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Fig. 4. The location of RRNet embedded in HEVC. We insert the RRNet into HEVC as an in-loop method.
The RRNet would input residual from extracting module and reconstruction into the Residual Network and
the Reconstruction Network, respectively. The RRNet is executed instead of DF and SAO filters.
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Table 1. The Residual Network Parameters of conv layers

Layers Kernel Size Feature maps Stride Padding
Number

Conv 1 3 × 3 32 1 1
Residual Block 1 3 × 3 64 1 1
(2 convs)
Residual Block 2 3 × 3 64 1 1
(2 convs)
Residual Block 3 3 × 3 64 1 1
(2 convs)
Conv 8 3 × 3 32 1 1

Table 2. The Reconstruction Network Parameters of Conv And Transposed Conv Layers

Type of Layer Conv1 Conv2 Conv3 Transposed Conv1 Conv4 Transposed Conv2 Conv5 Conv6
Kernel Size 3 × 3 3 × 3 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3 3 × 3

Feature Map Number 32 64 128 64 64 32 32 32
Stride 1 1 1 2 1 2 1 1

Padding 1 1 1 0 1 0 1 1

As explained in the last paragraph, both the reconstruction and residual are utilized as the inputs
of the proposed network. Applying the reconstruction as input is the same as most existing works
since our target is to enhance the reconstruction. However, why the residual is used as the other
input for our proposed RRNet network?

First, we believe that the residual can provide accurate transform unit (TU) partitions and great
textures beneficial for the enhancement. Fig. 1 gives a typical example of the residual from the se-
quence Kimono. We can see clear TU boundaries from the residual figure. As we know, the basic
unit of encoding the residual is a TU. Each TU transforms and quantizes independently. There-
fore, it is more probable to have severe artifacts in the block boundary than the block center. The
TU boundary information is a good indicator that implicates where the distortion is more severe
and guides the network to learn more distinct features. In addition, we can see from the residual
frame in Fig. 1 that, within each TU, the texture information is still visible. They can illustrate the
body shapes of the girl and tree trunks clearly. This texture information also contributes to the
reconstruction enhancement.

Second, the residual signal suffers from frame prediction accuracy, most notably in the areas
where the residual contains non-zero values. This essentially means that the encoder does not
accurately predict the regions where the residual values are large. Accordingly, the residual is
beneficial for the CNN learning process, especially in areas where the residual contains non-zero
values. From the extracted residual feature maps as shown in Fig. 3, we can see that the residual
signal is useful for improving the capability of the CNN to learn sharp edges and complex shape
information that would otherwise be missed by the encoder.

In addition to introducing the residual as the dual input, we can also see from Fig. 2 that we use
different sub-networks for the reconstruction and residual. As we know, the characteristics of the
reconstruction and residual are different. The residual is more sensitive, while the reconstruction
consisting of residual and prediction contains more global information. We should design specific
sub-networks to optimize the features derived from various inputs and improve the reconstructed

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date:

January 2021.



1:8 Wei Jia, Li Li, Zhu Li, Xiang Zhang, Shan Liu.

frame quality. A detailed introduction of the two sub-networks will be described in detail in the
next two subsections.

To give a better illustration of how we embed the above-introduced framework in HEVC, we
give a modified HEVC encoder in Fig. 4. We replace the deblocking and SAO filters using the
proposed RRNet framework. The output frame from our framework will be used as a reference for
the to-be-encoded frames in the future. Note that in the proposed RRNet framework, we need to
extract the residual from the bitstream in addition to the reconstruction.

3.2 Design of the Residual Network
We develop a Residual Network consisting of several residual blocks [18] to adapt to the residual
features. The residual block could effectively keep the residual features and the gradient infor-
mation on the shallow layers. Therefore, the proposed Residual Network can derive the distinct
features from the residual frame. Considering the complexity, we use only 8 convolutional layers
to derive the residual features. Because the network consisting of residual blocks [18] could effec-
tively keep the residual features and the gradient information on the shallow layers [46], we adopt
the residual block as the basic unit of our Residual Network.

The network based on the residual blocks brings apparent advantages. In the residual blocks
based network, the collection of multiple routes substitutes the simple sole route. Based on the
multiple routes property, because of the independence of the routes in the residual block-based
network, this uncorrelated property enhances the canonical effect of the Residual Network. Be-
cause the contributions for the gradient information are mainly from the shallow layers, adding
the weights of the short routes could effectively prevent from vanishing gradient.

In Fig. 2, the upper pathway shows the detailed architecture of our proposed Residual Network.
Table 1 shows the convolutional layers configurations. The Residual Network includes three resid-
ual blocks consisting of six convolutional layers and two convolutional layers at the beginning
and end. We set the Kernel Size for each convolutional layer as 3 × 3, the Feature Map Number as
32, Stride as 1, and Padding as 1. As the Parametric Rectified Linear Unit (PReLU) [17] has been
demonstrated to be more effective than the ReLU, we employ it as the activation function in the
Residual Network. We compute the feature maps of the Residual Network as follows:{

𝐹 𝑟𝑒𝑠𝑖 (𝑥) = 𝐴(𝑊𝑖 ∗ 𝐹 𝑟𝑒𝑠𝑖−1 (𝑥) + 𝐵𝑖 ), 𝑖 ∈ {2, 4, 6, 8}
𝐹 𝑟𝑒𝑠𝑗 (𝑥) = 𝐴(𝑊𝑗 ∗ 𝐹 𝑟𝑒𝑠𝑗−1 (𝑥) + 𝐵 𝑗 ) + 𝐹 𝑟𝑒𝑠𝑗−2 (𝑥), 𝑗 ∈ {3, 5, 7} (1)

where 𝑥 denotes the input of residual, 𝐴 is the activation function,𝑊𝑖 and 𝐵𝑖 are the weights and
bias matrices respectively.

3.3 Design of the Reconstruction Network
Simultaneously, we consider the reconstruction signal as the other input. Therefore, we design
a Reconstruction Network containing several downsampling and upsampling pairs to learn the
reconstruction features. The Reconstruction Network adopts the classic autoencoder architecture
[5, 20] with the skip connection concatenating the encoder and decoder parts [41]. In this way, the
reconstruction network can recover the global information and details as much as possible.

The Reconstruction Network has the following advantages. On the encoder side, downsampling
the reconstruction helps extract more useful reconstruction features of low space dimensions.
Based on the downsampling operation, upsampling the small reconstruction features helps derive
the more extensive reconstruction features on the decoder side.The skip connection concatenating
the reconstruction features from the encoder side could help the decoder to recover the global and
detailed information of the reconstruction.
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Table 3. Training parameters

Parameters QP 37
Base Learning Rate 1𝑒−4

𝛾 Adjusting Coefficient 0.1
Adjusting Epochs Interval 100
Weight Decay 1𝑒−4

Momentum 0.9
Total Epochs 120

In Fig 2, the lower pathway shows the detailed structure of our proposed Reconstruction Net-
work. We adopt the pooling and transposed convolutional layer to perform downsampling and
upsampling, respectively. In the encoder phase, downsampling reduces the redundancy effectively
in the reconstruction and keeps useful information. However, it may cut the global context as well.
Hence, we execute the upsampling in the decoder phase to propagate the global information of
the reconstruction to the next convolutional layer. Next, in the skip connection phase, we concate-
nate the concentrated reconstruction features from the encoder to the upsampling reconstruction
features from the decoder. This is to provide the network with both the brief features and global
context in the reconstruction. The Reconstruction Network is a difference learning network as
well. Table 2 shows the detailed configurations. For the convolutional layers, we set the Kernel
Size to 3 × 3, Stride to 1, Padding to 1, Feature Map Number to 32, 64 or 128. For the transposed
convolutional layers [55], we set the Kernel Size to 2 × 2, Stride to 2, Padding to 1, Feature Map
Number to 64 or 32. The reconstruction network can be formulated as follows,

𝐹 𝑟𝑒𝑐𝑖 (𝑧) = 𝑃 (𝑊𝑖 ∗ 𝐹 𝑟𝑒𝑐𝑖−1 (𝑧) + 𝐵𝑖 ), 𝑖 ∈ {1, 2} (2)

where 𝑧 is the reconstruction signal input, and 𝑃 represents the sequential functions for activation
and max-pooling. We choose PReLU as the activation function in the Reconstruction Network.

𝐹 𝑟𝑒𝑐5 (𝑧) = 𝐶 (𝑃 (𝑊5 ∗ 𝐹 𝑟𝑒𝑐4 (𝑧) + 𝐵5), 𝐹 𝑟𝑒𝑐2 (𝑧))
𝐹 𝑟𝑒𝑐7 (𝑧) = 𝐶 (𝑃 (𝑊7 ∗ 𝐹 𝑟𝑒𝑐6 (𝑧) + 𝐵7), 𝐹 𝑟𝑒𝑐1 (𝑧)) (3)

where 𝐶 denotes the concatenating function for jointing features.
After concatenating the features of the Residual Network and the Reconstruction Network, we

calculate them with a convolutional layer of 1 channel. Then we obtain the final output 𝐹𝑜𝑢𝑡 (𝑥, 𝑧)
which is the same size as input.

3.4 Loss function, dataset and training
Loss function. We employ Mean Squared Error (MSE) [47] as the loss function for our proposed
RRNet as follows,

𝐿(Θ) = 1

𝑁

𝑁∑
𝑖=1

| |Υ(𝑌𝑖 |Θ) − 𝑋𝑖 | |22 (4)

where Θ encapsulates the whole parameter set of the network containing weights and bias and
Υ(𝑌𝑖 |Θ) denotes the network module.𝑋𝑖 is a pixel of the original frame, where 𝑖 indexes each pixel.
𝑌𝑖 is the corresponding pixel of the reconstruction, that is compressed by HEVC when we turn off
its deblocking and SAO. 𝑁 is the number of pixels.

Dataset. We employ the DIV2K [1, 22] dataset comprising 800 training images and 100 vali-
dating images of 2𝑘 resolution as the original frames. Because modern video codecs operate on
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Table 4. BD-rate of the SOTAs and proposed RRNet against HEVC under All Intra case

Class Sequence VRCNN [10] EDSR Residual Partition-aware RRNet
vs. HEVC Blocks [31] vs. HEVC CNN [33] vs. HEVC vs. HEVC

A Traffic −8.1% −8.5% −8.7% -10.2%
PeopleOnStreet −7.7% −7.8% −8.2% -9.4%

B Kimono −5.9% −6.6% −6.9% -8.6%
ParkScene −6.2% −6.6% −6.9% -8.1%
Cactus −2.7% −4.9% −5.4% -5.8%
BasketballDrive −5.2% −4.6% −4.7% -7.7%
BQTerrace −2.9% −2.9% −2.9% -4.2%

C BasketballDrill −10.6% −10.9% −11.3% -13.8%
BQMall −7.3% −7.0% −7.4% -9.3%
PartyScene −4.6% −4.5% −4.8% -5.6%
RaceHorses −5.8% −5.0% −5.3% -7.1%

D BasketballPass −7.6% −7.3% −7.8% -9.5%
BQSquare −5.3% −5.4% −5.8% -6.3%
BlowingBubbles −5.5% −5.5% −5.7% -6.7%
RaceHorses −8.9% −8.8% −9.1% -10.2%

E FourPeople −10.0% −10.4% −10.9% -12.8%
Johnny −9.1% −8.1% −8.7% -12.5%
KristenAndSara −9.4% −9.0% −9.6% -11.8%
Class A −7.9% −8.2% −8.5% -9.8%
Class B −4.6% −5.1% −5.4% -6.9%
Class C −7.1% −6.9% −7.2% -8.9%
Class D −6.8% −6.7% −7.1% -8.2%
Class E −9.5% −9.2% −9.7% -12.4%

Avg. All −6.8% −6.9% −7.2% -8.9%

YUV color domain, we convert the original 900 PNG images to YUV videos with FFMPEG [2] of
GPU acceleration. A modified HEVC reference software is then used to encode original frames to
generate the reconstruction and residual with 𝑄𝑃22, 𝑄𝑃27, 𝑄𝑃32, and 𝑄𝑃37, respectively. We fi-
nally extract 64× 64 blocks from the Luma component of the reconstructed, residual, and original
frames and use them as the inputs and labels for training our proposed RRNet. In total, there are
522, 939 groups of inputs and labels for training and 66, 650 groups for validation.

Training. Once we obtain the residual and reconstruction patches of divided components, we
feed them into the Residual Network and the Reconstruction Network, respectively, by batch-size
of 16. Table 3 exhibits the parameters of training procedure for 𝑄𝑃37 samples. We experiment
with a larger learning (1𝑒−3) rate and a smaller learning rate (1𝑒−5), but the former one leads to
the gradient explosion while the later one learns too slowly.Therefore, 1𝑒−4 is the appropriate base
learning rate of 𝑄𝑃37 model. We adopt the Adaptive Moment Estimation (Adam) [28] algorithm
with the momentum of 0.9 and the weight decay of 1𝑒−4. These parameter values are selected
according to experience values. When the model is trained less than 120 epochs, the loss has not
been convergent. Accordingly, the 𝑄𝑃37 model is trained with 120 epochs. After 100 epochs, we
decrease the learning rate by 10 times. After the 𝑄𝑃37 model is derived, we fine tune it with 20
epochs to obtain the other models: 𝑄𝑃22, 𝑄𝑃27, 𝑄𝑃32. Finally, we obtain the models for all the
𝑄𝑃𝑠 for testing.
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Fig. 5. Comparison of RD curves in HEVCwithDF and SAO, VRCNN and proposed RRNet on luminance. The
compared RD curves of BasketballDrill(a), FourPeople(b), Johnny(c) and Traffic(d) are shown. It is obvious
that our proposed RRNet outperforms HEVC with DF and SAO and VRCNN for all theses sequences under
all tested QPs including 22, 27, 32 and 37.

4 Experimental results
To test the performance of the proposed algorithm, we embedded the proposed RRNet scheme into
HEVC reference software as shown in Fig. 4. In this section, we first compare the proposed RRNet
with VRCNN [10], EDSRResidual Blocks [31], Partition-aware CNN [33], andHEVConBD-rate [3],
respectively. Subsequently, we validate the multiple inputs function by comparing the dual-input
residual and reconstruction with the solo input reconstruction. Meanwhile, we compare the dual-
input Residual and Reconstruction approach with the dual-input Partition and Reconstruction
approach [33]. Afterward, we evaluate the efficiency of different networks on the same inputs by
comparing RRNet and EDSR Residual Blocks with the dual-input of residual and reconstruction.
For the test, we test all the sequences defined in HM-16.19 CTC [42] under the intra-coding and
inter-coding configurations.
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Table 5. The computational complexity of VRCNN and proposed RRNet against HEVC under All Intra case

Approches Frame-work Encoding Time Decoding Time
VRCNN Pytorch(C++) 108.72% 420.41%
RRNet Pytorch(C++) 117.48% 1238.78%

Table 6. BD-rate of VRCNN and proposed RRNet against HEVC under Random Access case

Class Sequence VRCNN vs. HEVC RRNet vs. HEVC
A Traffic −5.0% -6.0%

PeopleOnStreet −1.4% -1.6%
B Kimono −1.9% -2.6%

ParkScene −2.7% -3.4%
Cactus −3.2% -3.9%
BasketballDrive −1.4% -1.9%
BQTerrace −5.2% -5.8%

C BasketballDrill −3.1% -4.3%
BQMall −2.0% -2.5%
PartyScene −0.5% -1.0%
RaceHorses −1.3% -1.4%

D BasketballPass −0.7% -0.9%
BQSquare −1.4% -2.1%
BlowingBubbles −1.8% -2.4%
RaceHorses −1.5% -1.6%

E FourPeople −8.2% -9.5%
Johnny −7.6% -10.2%
KristenAndSara −6.9% -7.6%
Class A −3.2% -3.8%
Class B −2.9% -3.5%
Class C −1.7% -2.3%
Class D −1.4% -1.7%
Class E −7.6% -9.1%

Avg. All −3.1% -3.8%

4.1 Performances of the proposed RRNet algorithm
Table 4 shows the comparison results of VRCNN [10], EDSR Residual Blocks [31], Partition-aware
CNN [33], and the proposed RRNet against HEVC under the all intra case. Note that to ensure
fairness, the EDSR Residual Blocks and Partition-aware CNN all employ eight convolutional layers,
including three residual blocks as shown in Table 9, which have the same convolution layer depth
as the one of the Residual Network in the proposed RRNet. We train 𝑄𝑃37 models of VRCNN,
EDSR Residual Blocks, and Partition-aware CNN with 120 epochs on the whole DIV2K dataset
and then achieve the models of 𝑄𝑃32, 𝑄𝑃27 and 𝑄𝑃22 by fine tuning the trained 𝑄𝑃37 model
with 20 epochs. These are identical to the process used to train RRNet as stated in Section 3.4.

We can see that the proposed RRNet algorithm outperforms VRCNN, EDSR Residual Blocks, and
Partition-aware CNN by an average of 2.1%, 2.0%, and 1.7%, respectively. Additionally, the RRNet
method surpasses VRCNN, EDSR Residual Blocks, and Partition-aware CNN in every sequence
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Table 7. The dual-input Residual and Reconstruction approach and the dual-input Partition and Reconstruc-
tion [33] approach versus Reconstruction only approach on the BD-rate

Partition and Reconstruction [33] Residual and Reconstruction
vs. Reconstruction vs. Reconstruction

Class A −0.4% -1.0%
Class B −0.2% -0.9%
Class C −0.4% -1.1%
Class D −0.4% -0.8%
Class E −0.6% -1.6%
Avg. All −0.4% -1.0%

in BD-rate. Specifically, the proposed RRNet scheme outperforms VRCNN, EDSR Residual Blocks,
and Partition-aware CNN by 2.9%, 3.2%, and 2.7% on Class E, respectively. Similarly, compared to
theHEVC anchor, RRNet realizes a substantial gain on BD-rate with an average of−8.9%.Themost
remarkable individual difference occurs on BasketballDrill sequence with a gain of −13.8% on BD-
rate. This sequence contains particularly complex textures with very dramatic variations. These
performances demonstrate that RRNet effectively enhances the reconstruction by introducing the
residual signal and developing customized networks for residual and reconstruction inputs.

Fig. 5 shows the luminance Rate-Distortion (RD) curves of the proposed RRNet approach, VR-
CNN, and HEVC anchor. As illustrated, the PSNR of the proposed RRNet method is higher than
the one of VRCNN and HEVC with in-loop filters under every QP in BasketballDrill, FourPeople,
Johnny, and Traffic sequences. This clearly shows that the proposed RRNet model is superior to
the VRCNN and HEVC baseline approaches to enhance the quality of compressed video frames.

The time complexity [30] is exhibited in Table 5. In all cases, we apply the same test environ-
ment. Specifically, the GPU configuration is GTX 1080ti. Due to the huge computation of CNN
on the encoder side, VRCNN takes 8.72% longer than HEVC. Meanwhile, because of the dual-
input networks, RRNet takes 17.48% longer than HEVC. On the decoder side, the results reflect
a similar situation for complexity. HEVC computes fastest while RRNet complexity overhead is
1238.78%. We can adopt the methods of model compression and acceleration [6–8] to reduce the
redundancy of the proposed RRNet model. The solutions of model compression and acceleration
includes parameter pruning, quantization, low-rank factorization, compact convolutional filters,
and knowledge distillation. We can use the parameter pruning and quantization based approaches
to remove the redundancy of the RRNet parameters. In addition, the low-rank factorization based
methods are utilized to calculate the useful parameters of RRNet. The compact convolutional fil-
ters are structurally designed to shrink the parameter space of RRNet and save computation and
storage resources. The approaches based on knowledge distillation is used to train a more compact
RRNet or learn a distilled RRNet model.

Table 6 shows the experimental results in random access case. We can see that the proposed al-
gorithm can bring an average of −0.7% and −3.8% BD-rate gain compared to VRCNN and HEVC,
respectively. Again, we can also see that RRNet outperforms the other two methods in every class.
Moreover, the peak difference between RRNet and VRCNN reaches 1.5% on Class E. This demon-
strates that the benefits brought by RRNet can be propagated to inter frames. Thus the RRNet can
bring significant performance improvements in random access case.
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Table 8. The computational complexity of the dual-input Partition and Reconstruction method [33] and the
dual-input Residual and Reconstruction approach against HEVC

Approches Frame-work Encoding Decoding
Time Time

Partition Reconstruction [33] Pytorch(C++) 122.24% 1581.63%
Residual Reconstruction Pytorch(C++) 123.81% 1669.39%

Table 9. Convolutional Parameters of EDSR Residual Blocks [31]

Kernel Size 3 × 3
Feature Map Number 32
Stride 1
Padding 1

4.2 Results analysis of multiple inputs approaches
Here we compare the method with residual and reconstruction inputs to the method with only
reconstruction input. Additionally, we compare the dual-input Residual and Reconstruction ap-
proach with another multiple inputs approach that utilizes the mean mask of the PU partition [33]
and Reconstruction. Note to guarantee a fair comparison, all reconstruction sub-networks utilize
the same network with eight convolutional layers, including three EDSR residual blocks shown in
Table 9.

Table 7 exhibits the comparison of the dual-input Residual and Reconstruction scheme against
Reconstruction onlymethod and the comparison of the dual input PU Partition and Reconstruction
method against Reconstruction only method. On the one hand, the dual-input Residual and Recon-
struction saves an average of −1.0% BD-rate compared with Reconstruction only method. On the
other hand, the dual-input Residual and Reconstructionmethod saves an average of−0.6%BD-rate
over the dual input Partition and Reconstruction method. Specifically, the dual-input Residual and
Reconstruction approach leads −1.6% BD-rate on Class E against the only Reconstruction method.
The peak difference of BD-rate between the dual-input Partition and Reconstruction method and
the only Reconstruction method on Class E is −0.6%. In every class, the dual-input of the Residual
and Reconstruction approach is better than the only Reconstruction method and the dual-input of
the Partition and Reconstruction method on BD-rate.

These performances clearly show that based on the same network architecture for video re-
construction, the residual signal provides useful information for augmenting the quality. This is
reasonable because the inverse transformed residual provides the TU partition information and the
detailed textures used to enhance the reconstruction. Hence, introducing the residual signal aug-
ments the quality of the compressed video frame prominently. In conclusion, compared to the only
Reconstruction method and another multiple input methods based on the mean mask of the par-
tition, the dual-input Residual and Reconstruction approach clearly augments the reconstruction.
On the aspect of the time complexity, as shown in Table 8, the dual-input Residual and Reconstruc-
tion approach and the dual-input Partition and Reconstruction method are approximately on the
same level.
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Table 10. BD-rate of RRNet against the dual-input Residual and Reconstruction with EDSR Residual Blocks
[31]

Class RRNet vs. Residual and Reconstruction with EDSR Residual Blocks
Class A −0.8%
Class B −1.4%
Class C −1.0%
Class D −0.5%
Class E −2.2%
Avg. All −1.2%
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Fig. 6. The comparison of QP 32 model with respective QP models. The ΔPSNR on Δ𝑄𝑃 = 0 means the
QP32 model compared to itself on PSNR is zero. Except QP34 setting, the PSNR of individual QP model is
better than the one for the QP32 settings on the other QP parameters. The ΔPSNR increases significantly
with the absolute value of ΔQP on the each side of Δ𝑄𝑃 = 0.

4.3 Results analysis of network architecture
We compare the proposed RRNet approach with the dual-input of residual and reconstruction
method with EDSR Residual Blocks to evaluate the performance of the proposed Residual Net-
work and Reconstruction Network. Note that both the RRNet and the second method have the
same inputs. The second method utilizes the EDSR Residual Blocks on both residual and recon-
struction. Table 10 shows the compared results between RRNet and the dual-input of residual and
reconstruction approach with EDSR Residual Blocks. RRNet gains an average of −1.2% BD-rate
against the latter method. Specifically, the proposed RRNet outperforms the dual-input of resid-
ual and reconstruction method with EDSR Residual Blocks in every class sequence for BD-rate.
The largest difference of BD-rate is −2.2% on the Class E sequence. These demonstrate that both
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Fig. 7. Visual comparisons between the ground truths, HEVC anchor, VRCNN, and proposed RRNet ap-
proach on the luminance of 𝑄𝑃37 in Johnny and BasketballDrill sequences, respectively. The groups of fig-
ures (a), (b), (c), and (d) are the original video, the video generated using HEVC, the video generated using
VRCNN, the video generated using RRNet, respectively. (Zoom in for better visual effects.)
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the Residual Network and the Reconstruction Network fit their respective signals very well. The
results also clearly demonstrate that processing the residual and reconstruction with unique archi-
tectures is beneficial. Additionally, the validation of comparison provides evidence that the RRNet
network shows an obvious improvement in the quality of coded frames.

4.4 The performance from a specific QP model on different QPs
To validate the performance from an assigned QP model on other QP settings, as illustrated in
Fig. 6, we compared the PSNR of QP32 when reconstructed by other QP models. The ΔPSNR on
Δ𝑄𝑃 = 0 means that the QP32 model compares itself on PSNR, and it should be zero. Except for
QP34, the PSNR of other QP models evaluated on itself is better than when it is evaluated on the
QP32 model. The ΔPSNR increases dramatically with the absolute value of ΔQP on both positive
and negative sides. Accordingly, specific QP tuned models outperform the other QP models when
tuned for that specific setting. In summary, based on Fig. 6, a model can be reused to replace
another model in the range of −2 to 2 ΔQP.

4.5 Subjective Results
Fig. 7 exhibits the visual comparisons between the ground truths, HEVC anchor, VRCNN, and
proposed RRNet approach on the luminance of 𝑄𝑃37 in Johnny and BasketballDrill sequences,
respectively. The groups of figures (a), (b), (c), and (d) are the original video, the video generated
using HEVC, the video generated using VRCNN, the video generated using RRNet, respectively.
In the Johnny, from the zoomed gold blocks, we can see that there are evident distortions and
textures miss in the HEVC and VRCNN frames, while the RRNet frame shows smoother and more
abundant textures.We can see from the zoomed blue rectangles that the HEVC and VRCNN frames
blur more severely than the RRNet frame. From the BasketballDrill, we can see from the zoomed
gold and blue blocks that the distortions in HEVC and VRCNN frames are more serious than the
one of the RRNet frame. The experimental results demonstrate that the proposed RRNet can bring
better subjective qualities than the previous in-loop filtering methods.

5 Conclusion
In this paper, we propose a new video deblocking solution that utilizing both reconstructed pix-
els as well as rich information and features available from the compression pipeline. The coding
residual signal unique from compression pipeline is utilized as an additional input for improv-
ing the CNN based in-loop filter for HEVC. In essence, it is introduced to enhance the quality of
reconstructed compressed video frames. In this process, we first import the residual as an indepen-
dent input to reinforce the textures and details. Then, we custom designed RRNet approach that
involves two separate CNNs: the Residual Network and the Reconstruction Network. Each cus-
tomized layer aims to reveal specific features that are characteristic of each type of frame. In the
Residual Network, we apply residual blocks to minimize the difference between the input frame
and the output frame. In the Reconstruction Network, we utilize both downsampling and upsam-
pling ladders to adapt to learn the features for the reconstruction frames. The experimental results
demonstrate that the proposed algorithms significantly reduce artifacts from both objective and
subjective perspectives. From the objective point of view, the BD-rate is significantly improved.
From the subjective point of view, the reconstruction quality of the compressed video frames is
superior. These results demonstrate that the proposed schemes improved the current state of the
art significantly in BD rate reduction. In the future, we will try to create more advanced in-loop
methods for video coding, while develop complexity reduction for the inference time model.
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